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A note on scattering theory in non-relativistic quantum 
electrodynamics 

Asao Arai 
Department of Mathematics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, 
Tokyo 152, Japan 

Received 24 March 1982 

Abstract. Scattering theory of photons by a free electron is considered rigorously in a 
cut-off non-relativistic quantum electrodynamics and within the dipole approximation. 
The dipole approximation permits one to obtain the dressed one-electron states as well 
as the photon scattering cross section exactly. It is noted that the cross section of the 
Thomson scattering is obtained in the low photon-energy limit only after the electron 
mass is renormalised. 

1. Introduction 

In this paper we give a rigorous theory of scattering of photons by a free electron in 
a cut-off non-relativistic quantum electrodynamics and within the dipole approxima- 
tion. Apart from the mathematical technicalities, the main point is to show that the 
mass renormalisation of the electron is necessary to obtain the cross section of the 
Thomson scattering in the low photon-energy limit. 

The system we consider consists of one non-relativistic free electron interacting 
with a quantised radiation field. As usual, we use the Coulomb gauge. We introduce 
an ultraviolet cut-off which makes the interaction a well defined self-adjoint operator 
in the Fock space. 

The model, without the A* term of the interaction, was considered rigorously by 
Blanchard (1969) with special attention to the problem of infrared catastrophe. We 
keep the term, however, because it is essential for the scattering of photons by the 
electron. In a previous paper (Arai 1981a), a more general framework of the model 
was given including the case in which the electron is bound in an external potential, 
and the self-adjointness and the basic spectral properties of the Hamiltonians were 
established. 

The infrared problem arises in our model as in the cases of the models of scalar 
electrons interacting with massless bosons (Frohlich 1973) and the model by Blanchard 
(1969). This problem, however, can be overcome in the same way as by Frohlich 
(1973). Namely, we first introduce an infrared cut-off in the interaction in addition 
to the ultraviolet cut-off and prove the existence of dressed one-electron states (DES) 
of the total Hamiltonian. We remark that, without the infrared cut-off, the total 
Hamiltonian is well defined and self-adjoint in the Fock space, but the DES does not 
exist; this is the infrared catastrophe in our model. The infrared cut-off can be removed 
after the Wightman distributions are constructed as the expectation values of products 
of the radiation field with respect to the DES. 
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Scattering theory in non-relativistic QED 51 

Here : : denotes the Wick ordering and p a real-valued function whose Fourier 
transform serves as an ultraviolet cut-off. The parameter K 0 is the infrared cut-off. 
The function p K  is defined by 

(2.9) 

Throughout the present paper we assume that p* is a rotation-invariant function, 
satisfying 

p^>O 6 E ,Y’(R3) ( 2 ~ ) ” ~ p * ( 0 )  = J d3xp(x) = 1. (2.10) 

The mass renormalisation Sm(K)  is given by 

Sm(K)  =fe’IIp*K/wIIi (2.11) 

where 11 I)o denotes the L2(R3) norm. 

Theorem 2.1. Let m # S m ( K ) .  Then H ( K )  is essentially self-adjoint on D = 
D ( A O I ) n D ( I O H F M ) .  Inparticular,if m >2Sm(K), thenH(K)isself-adjointwith 
D ( H ( K ) )  =D. Furthermore, if m >Sm(K)(respectively m <6m(K)) ,  then H ( K )  is 
bounded below (respectively not bounded below). 

For the proof, see Arai (1981a). 

Since the electron momentum (-iV) commutes with H ( K ) ,  it is conserved, implying 
a lack of electron recoil in our model, so that we can decompose 3V and H ( K )  on 
the spectrum of (-iV): 

where 

(2.12) 

(2.13) 

(2.14) 

Theorem 2.2. Let m # 6m(K) .  Then, for all p E R3,  H ( K , p )  is essentially self-adjoint 
on D(HF’). In particular, if m > S m ( K ) ,  then H(K,p )  is self-adjoint with 
D (H(K,  p))  = D (HFM ) and is bounded below. 

Proof. The first half of the theorem can be proved in the same way as in theorem 
2.1. We now prove the second half. We write H ( K , p )  as 

H ( K ,  p )  = H F ~  + H:*) (K, p )  + H ! ~ ’  (K) +p2/2(m -6m ( K  )) (2.15) 

where 
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By the basic estimates 

(2.17) EM 1 / 2  
lla(r)(f)v'll l l f / J ~ l l o l l ~ ~ o  1 v'll 
Ila (r)*(f)v'll s Ilf/J&II(H,EM )1'2v'll + llfllollv'll 
r = 1 , 2  f, f/J, E L 2 ( R  3, v'ED((H0 1 1 (2.18) 

l l ~ : " ~ ~ , P ~ v ' l l ~ ~ ~ l ~ p ~ l l ~ ~ M v ' l / + ~ l ~ ~ ~ P ~ I l v ' I I  (2.19) 

EM 1 / 2  

we have 

llH:2' (K)v'll cI/HoEM v'II + dllv'll (2.20) 

for all v'cD(HoE') with E > O  arbitrary and with c-numbers c l (p) ,  d l ( ~ , p ) ,  c and d 
independent of K.  Furthermore, we have from the positivity of HFM and the canonical 
commutation relations 

with c-numbers c3(p)  and d ( p )  independent of K. It follows from (2.22) that H ( K , p )  
is a closed operator on D(HEM),  which, together with the essential self-adjointness, 
implies the self-adjointness of H ( K , p )  with D ( H ( K , p ) )  =D(HFM). It is clear that 
H ( K ,  p )  is bounded below if m > Sm ( K ) .  

Remark. In order to decide whether or not H ( K , p )  with S m ( K ) > m  is bounded 
below, more precise estimates seem to be needed. In the case Sm ( K )  > m, however, 
one finds an unphysical solution to the Heisenberg equation (cf Norton and Watson 
(1959), see also remark on lemma 3.1 of this paper). Physically, therefore, it would 
be sufficient to consider the case m > S m ( K ) .  

Lemma 2.1. Let m > S m ( K )  and 

A ( K , p ) = H ( K , p ) - E ( K , p )  (2.23) 

where E(K,  p )  is the infimum of m(H(K,  p ) ) ,  the spectrum of H ( K ,  p ) :  

E ( K , p )  = inf CT(H(K, p ) ) .  (2.24) 

Then, there exists a c-number c ( p )  independent of K such that 

\I' E D ( A ( K ,  p ) 1'2) (2.25) 

IIA(K, P)l'**ll =z c (P)llWEM + 1P2v'Il E D((HFM (2.26) 

€M 1/2 I l W o '  1 ~ l l - ( P ) l l ( ~ ( K 7 P ) +  1P2v'Il 
and 

In particular, we have 

(2.27) 
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Proof. By (2.19) and (2.20) we have 

IIfi(K, p)*ll c (P)II(HtM + 1)*ll (2.28) 

for all 9 E D(HF‘) with c ( p )  independent of K. Inequality (2.25) (respectively (2.26)) 
follows from (2.22) (respectively (2.28)) and Reed and Simon (1975) (p 168, theorem 
X18). Equation (2.27) is clear by (2.25) and (2.26). 

3. Dressed one-electron states and spectrum of the Hamiltonians 

From now on we assume m > Sm(0). Therefore, we have m >Sm(K)  for all K S O .  
In this section we shall prove the existence and uniqueness (respectively absence) 

of DES of H(K,  p )  with K > 0 (respectively K = 0 and p # 0) and analyse the spectra 
of both Hamiltonians. 

3.1. The Heisenberg field 

The Heisenberg field in % ( p )  is given by 

A ( f ,  t lK,p) = exp(itH(K,p))A(f) exp(-itH(Kp)) f/JO,f//o E L ’ ( R ~ )  (3.1) 

which, by (2.17), (2.18) and (2.27), is well defined on D(fi(K,p)1’2) .  Formally, 
A(f ,  tlK, p )  satisfies the equation (summation over repeated indices is understood) 

&-A)Aw(x, tlK,p) = - m - 6 m ( K )  

where 

e 
P,” (xIK)(p, +eA,bK, tlK,p)) CL = 1 , 2 , 3  

(3.2) 

pWY(xIK) = (2 r ) r3”  I d3k dFV(k)&(k) exp(ikx) (3.3) 

with 

d,,(k)=S,,-k,k,lk2 (3.4) 
and A(x, tlK, p )  is the symbolic notation of the field given by 

A(f, tlK,p) = I d3XA(X, tlK,p)f(x). (3.5) 

We shall explicitly construct A ( f ,  tlK, p )  given by (3.1) by solving the equation (3.2). 
To do this in a rigorous manner we need some lemmas, which go in parallel with 
Arai (1981b) (lemmas 4.1-4.9). We refer to Arai (1981b) as I. 

Let 

Lemma 3.1. (1) D ( z I K )  has no zeros in @\[K, CO). 

(3.7) 
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exist for each s E (K, 00) and are continuous in s. Furthermore, 

with some constant c independent of K. 

The proof is straightforward (cf I (lemma 4.4)). 

Remark. If Sm(K)>m,  then D(z1K) has a unique simple zero in (-00,0), which is 
the origin of an unphysical solution. 

Let Ma ( R 3 ) ,  a E R 3,  be the Hilbert spaces given by 

Ma ( R  3, = { f l  IIfIIa E IIuafIIo < a). 

In I (lemmas 4.1 and 4.2) it was proved that the operator G given by 

(3.9) 

(3.10) 

is a bounded operator on M-1,2(R3) and Mo(R3). Let TwU,K, k ,  v = 1 , 2 , 3 ,  K S O ,  be 
operators given by 

TpY,Kf = S , , f  + ~ Q K J & J ; ~ , $ K ~  (3.11) 

where 

QK (k ) = e 6 K  (k )/D+(k21K 1- 
Then, we have the following. 

(3.12) 

Lemma 3.2. Each Twy,K is a bounded operator on Ma (R 3, for a = -1, *;, 0. Further- 
more we have the following: 

(1) T:o.KdofiTwv.K = dav (3.13) 

where T,*B,K denotes the adjoint operator of T,o,K in M0(R3) .  

(3.14) 

(3.15) 

(4) If h is a rotation-invariant function on R 3 ,  then we have 
- 

T % . ~ d ~ d  T,  u , ~  = Tx B.K&, h Fw ”.K (3.16) 

Tu*o,Kdo,QKh = T,*p,Kdow&h AE (3.17) 

where the bar denotes the operator defined by 

(3.18) 

(3.19) 

(3.20) 

The proof is similar to those in I (lemma 4.9) and is omitted. 
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Let A, and 6, be the Fourier transforms of A ,  and T,, respectively: 

A,(f,=A,(?) 6,(f) =TJ?). 
We define 

(3.21) 

b"'(flK, p )  = ( 1 / h ) [ A ,  ( T : , , K e t ' J i f )  + i6, (T:a , f iL) f /J i )  + p v ( Q ~ e t ' / J o ,  f)-1/21 

(3.22) 

b ( " * ( f / ~ ,  p )  = (1 /&)[A, ( E a , & ' J w f )  -i+, (2a,&i f /J i )  + p y  (&e !)/Ji, f)-1/21. 

(3.23) 

By lemma 3.2, b"'(flK,p) and b"'*(flK,p), ~ E M - ~ I ~ ( R ~ ) ~ M ~ ( R ~ ) ,  are well defined 
on S,"", the subspace of finite particle vectors in SEM, and leave it invariant, satisfying 

(3.24) 

(3.25) 

for all q, 0 in SF" and all f, g in M-1/2(R3) nMo(R3);  all the other commutators 
vanish. The commutation relations (3.25) follow from (3.14). Furthermore, we have 
the following lemma. 

- 

(b(r ' ( f lK,P)% @) = (9, b'"*(JIK,p)@) 

[ b " ' ( r l ~ ,  PI, b'"*(g(K, P ) I ~ =  (f, g ) o a r s q  

Lemma 3.3. (1) Let b'"#(flK, p )  denote either b"'(flK, p )  or b("*(flK, p ) .  Then 

l/b"'#(flK, P M  c (P)(llfll-l,2 + l l f l l 0 ~ l l ~ f i ~ ~ ~  P) + 1)1'2qll (3.26) 

for all Y in D ( f i ( K , p ) ' l 2 )  and f in M-1 ,2 (R3)nMo(R3)  with some c-number c ( p )  
independent of K. 

(2) Let f be in M - 1 / 2 ( R 3 ) n M o ( R 3 ) n M 1 ( R 3 ) .  Then, b'""(flK,p) maps 
D ( f i i K , ~ ) ~ / ~ )  into D ( f i ( K ,  p ) )  and 

[fi(K,p), b'"#(flK, p)]Y = .b"'"(wf/K, p ) ?  

where + (respectively -) corresponds to b"'*( - IK, p )  (respectively b("( * IK, p ) ) ,  

q E D ( f i ( K ,  p ) 3 ' 2 )  (3.27) 

Proof. Inequality (3.26) follows from estimates (2.17), (2.18), lemma 3.2 (boundedness 
of T F Y , K  on M,(R3) ,  (Y = -1, *$, 0) and (2.25). By the canonical commutation relations 
for a " ' # ( * )  we first prove (3.27) for q in 9,"" n D ( f i ( K , ~ ) ~ ' ~ )  and then use a limiting 
argument to extend the result to all 9 in D ( f i ( K ,  P ) ~ ' ~ ) .  

Theorem 3.1. The Heisenberg field defined by (3.1) has the explicit form 

(3.28) 

Proof. Since we have established lemmas 3.2 and 3.3, the proof can be done in the 
same way as in I (theorem 4.1): the initial condition is checked by (3.13) and 
(3.15)-(3.17), and the Heisenberg equation follows from lemma 3.3. 
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Remark. By (3 .19 )  and (3 .20 )  we can show that the Heisenberg field A(f ,  tlK, p )  with 
f € Y ( R 3 )  satisfies the equation ( 3 . 2 )  on SF" in the sharp-time operator-valued 
distribution sense with the time derivative being taken in the strong topology. 

3.2. Asymptotic fields 

Let 

a" '# ( f ,  t)lK, p )  = exp(i(tH(K, p ) )  exp(-itHFM ) a " ' # ( f )  exp(itHFM) exp(-itH(K, p ) )  

r = l , 2  K a O  (3 .29 )  

By (2.27), a" '#( f ,  t lK,p)  is well defined on with f in M - 1 / 2 ( R 3 ) n M ~ ( R 3 ) .  
D ( A ( K ,  p y ) .  

Theorem 3.2. Let \I' be in D ( d ( K ,  p ) l " ) .  Then, the strong limits 

s - lim a" '# ( f ,  t l K , p ) \ I ' ~ a ~ : ~ i " ( f l K , p ) ~  K 2 O  (3 .30 )  
r - i m  

exist and are given explicitly by 

ai:'# (flK, p )  = b"'#(flK, p )  (3 .31)  

where 

(3 .33 )  

(3 .34 )  

and the function [f] is defined by 

The proof is similar to that of I (theorem 5 . 1 )  and is omitted. 

Remark. If supp f c {lk I < K }  ( K  > 01, then 

a" '# ( f ,  tlK, p )  = a("#(f). 

Thus, in the proof of theorem 3.2 ,  we need only consider the case when supp f c 
{ I k I s K } .  Note also that, if s u p p f c { ( k ( < K }  ( K > 0 ) ,  then we have from (3 .22 )  
and (3 .23 )  

b"'#(flK, p )  = a" '# ( f ) .  

3.3. DES, infrared cut-off and spectrum of the Hamiltonians 

Since we have established theorems 3.1 and 3.2 ,  we can prove the following (see I 
(lemmas 6.2-6.4)).  
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Lemma 3.4. (1) Either u p ( H ( K ,  p ) )  = 0 or a,(H(K, p ) )  = {E(K,  p )} holds, where 
a,(H(K, p ) )  denotes the point spectrum of H ( K ,  p ) .  

(2) The ground state of H ( K , p ) ,  i.e., the DES with electron momentum p, if it 
exists, is unique up to scalar multiples. 

(3) Let K a 0  and p be fixed. Then, U is the DES of H ( K , p )  if and only if 
b'"( f lK,p)U=O, r = l , 2 , f o r  a l l f inM-112(R3)nMo(R3) .  

Keeping the above lemma in mind, we shall prove that the infrared cut-off 
(respectively no infrared cut-off) implies the existence (respectively absence) of DES. 

We first have the following. 

Theorem 3.3 (absence of DES). Let p # 0. Then, H ( 0 ,  p )  has no DES. 

Proof. Suppose there exists a non-zero vector U in X ( p )  such that 

A(0, p)U = 0. 

Then, by lemma 3.4(3), we have 

b"'(fl0, p)U = 0 r = 1 , 2  f E M- 1 / 2 ( R  3, n Mo(R '). (3 -36) 
Let 

(3.37) 

Then, by lemma 3.2, (3.22) and (3.36), we can show that F ' " ( f )  defines a continuous 
linear functional on M0(R3).  Therefore, by the Riesz lemma, there exists a non-zero 
vector 6''' E Mo(R3) such that 

f €Mo(R3).  F"" = (P, f)o 

Comparing with (3.37), we get 
- 3 / 2  [ ' r '  = w Qoe L'p,. 

This, however, is a contradiction because the RHS is not contained in M0(R3) .  Thus, 
H ( 0 ,  p ) ( p  # 0) has no DES. 

We next proceed to construct the DES of H ( K , p )  with K > O  or of H ( 0 , O ) .  Let 

(3.38) 
- -  

I 1 ( r )  * W(:," ( K ) f  = e ,  T,,KeI"'JiLI+Jwejl'T~,,Ke',"' 
w 

(3.39) W " . " ( ~ ) f = z i - J = e ~ ' r ~ u , ~ ,  1 1  -( S ,/- w -  J- we L) T '," 1 
w 

Then, by lemma 3.2, W$"[(K) are bounded operators on M,(R3) for a = -;, 0. We 
can rewrite (3.22) and (3.23) as 

b"'(flK, p )  = 1 [a "'*( W!?" ( K ) f )  + a "'( WSf*r' ( K ) f ) ]  + 1 2 

s = l  
p ,  (QKe :I/&, f ) -1 /2  

(3.40) 
- 1 2 

s = l  
b"'*(flK, p )  = 1 [U's)*(w!?r)  (K)f) + a " ' ( ~ ~ ' r ' ( K ) f ) ] f ~ P r ( ~ K e ~ ' / ~ w ,  f)-1/2. 

(3.41) 
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The properties of TFY,K given in lemma 3.2 read 

W,(K)* W+(K)  - W_(K)* W- (K)  = I  

W,(K)* W- (K)  - W-(K)* W+(K)  = 0 

W+(K)  W,(K)* - W-(K)  W_(K)* = I  

W- (K)  W,(K)* - W+(K)  W_(K)* = 0 

Na ( R 3 )  = ( M a  (R 3) )2  

W*(K) = ( W Y  ( K ) ) .  

where W,(K) are bounded operators on the Hilbert spaces 

for CY = - &  0, defined by 

(3.42) 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

Lemma 3.5. For all K 2 0, W(r’s)  ( K )  is a Hilbert-Schmidt operator on Mo(R ’). 

Proof. By direct computations, we have 

(W“.”(K)f)(k) = I d3k‘ w K ( k ,  k’) f (k’)  

where 

It can be easily seen that wK( a ,  a )  E L2(R6)  for all K 3 0 .  Thus the lemma follows. 

We can see from (3.42) and (3.44) that, for all K 2 0 ,  W+(K)-’ exists as a bounded 

C ( K )  = W - ( K )  W+(K)-’. (3.48) 

operator on N ~ ( R ~ ) .  Let 

Then, by lemma 3.5, each C“’”(K) is a Hilbert-Schmidt operator on Mo(R3).  

Lemma 3.6. Let Cks) (k ,  k ’ )  be the Hilbert-Schmidt kernel of C“’”(K). Then, we 
have 

(3.49) c y  ( k ,  k ’ )  = c y  ( k ’ ,  k ) .  

(w+(K)-’)* W_(K)* = W-(K)  W+(K)-‘ 

Proof. Equation (3.49) is equivalent to C(K)* = C ( K ) ,  i.e., 

which is in turn equivalent to (3.43). 

Let K > O  and 

2 

r.s = 1 
V ( K , p )  = -2  c I d3k d3k’ a “ ’ * ( k ) C ~ ” ( k ,  k’)a”’*(k’) 

(3.50) 
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where u , , ~  is a function in No(R3) given by 

U L, i  = w-3'2Qd JZ. 
We can see that the vector 

(3.51) 

(3.52) 

is well defined, where 0, is the Fock vacuum in gEM and c (K,  p )  is a c-number such 
that ll*1(K, p)ll= 1. 

Theorem 3.4. For each p E R 3 ,  the DES of H ( K ,  p)  with K > 0 exists and is given by 
(3.52) up to scalar multiples. 

Proof. By lemma 3.2(2)-(3), we need only to show that 

"IK, PWl(k,  p )  = 0 r = 1 , 2  ~ E M - ~ ~ ~ ( R ~ ) ~ M ~ ( R ~ ) .  (3.53) 

We can see that 

so that 

Thus, we get (3.53). 

Corokzry 3.1. The DES of H ( 0 , O )  exists and is unique up to scalar multiples. 

Proof. We note that, for p = 0, V ( K ,  p )  given by (3.50) is well defined even for K = 0 
and so is 91(0,0) by (3.52). In the same way as above we can show that 91(0 ,0)  is 
the DES Of H(O,o) .  

Corollary 3.2. (1) Let K > 0. Then, we have 

a ( H ( K ,  PI) = p ) ,  a) C,(H(K P)) = { E ( K  P)). (3.54) 

The eigenvalue E ( K ,  p )  is simple and is given by 

(3.55) 
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The eigenvalue Eo is simple and is given by 

(3.58) 

Proof. (3.54) (respectively (3.57)) follows from theorem 3.4 (respectively corollary 
3,1), lemma 3.4(1) and Arai (1981a) (proposition 4.1). The eigenvalue E ( K , p )  can 
be computed from the identity 

E ( K ,  p )  = (ao, H ( K ,  P)*I(K, P)) / (Ro,  *l(K, PI). 

Remark. It can be seen that f i ( K ,  p )  with K > 0 and f i ( 0 , O )  are unitarily equivalent 
to HF'. 

Corollary 3.3. The spectrum of H(0,  p )  with p # 0 is purely continuous: 

a(H(O,  P)) = PI, CO) a,(H(O, PI) = 0. (3.59) 

Proof. By estimates similar to (2.19) and (2.20), one can easily see that 

lim lI(H(K,p)-z)-'II=ll(HCO,p)-z)-'lI (3.60) 

for all z E p ( H ( K ,  p ) )  n p ( H ( 0 ,  p ) ) ,  where p(H(K,  p ) )  denotes the resolvent set of 
H ( K , p ) .  Since ( E ( K ,  p )  +c)- '  = ll(H(K, p )  +c)-'ll for all K 2 0  and sufficiently large 
c > O ,  we get 

(3.61) 

K -0 

lim E(K,  p )  = E(0,  p ) .  
K -0 

Using (3.61), we can prove in the same way as in the proof of (3.60) that 

K - 0  lim I I ( ~ W , P ) - Z ) - ~ I I =  I I ( ~ ~ ( o , P ) - ~ ) - ~ I I  

for all z € @ \ I O ,  CO). Since cr (A(K ,p ) )  = [ O , O O )  by corollary 3.2, it follows from a 
standard theorem (see Reed and Simon (1972) (theorem VIII.23)) that [0, CO) c 
a ( & ( O , p ) ) .  On the other hand, f i ( 0 , p )  is positive. Thus we get the first part of 
(3.59). The second part of (3.59) follows from lemma 3.4(1) and theorem 3.3. 

4. Removal of infrared cut-off 

We can now construct the Wightman distributions and remove the infrared cut-off. 

Lemma 4.1.  There exists a c-number c ( p )  independent of K such that 

Proof. Use (2.17), (2.18) and (2.25). 

Lemma 4.2. Let f~ Y ( R 3 ) .  Then, A,(f), p = 1,2 ,3 ,  leave C"(H(K,p) )  invariant 
and for any CY > O  there exist a constant p and a Y(R3)-norm / ~ ~ f ~ ~ ~  independent of K 
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One can see that, for a 3 -1, 

with constants C;,:' independent of K. Therefore, by lemma 4.1, we get 

I(?, [Adfi(K,  P)I 'A, (~)~) I<I I I~ I I I~(~,  ( f i ( K , ~ ) + l ) V )  

n a l  \I' E D (fi(K, P 1) 
with some Y(R3)-norm l i l f l l l n  independent of K. The lemma now follows from the 
Nelson lemma (see Nelson 1972). 
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(4.8) 

where Zcomb indicates the sum over all (2n)!/2"n! ways of writinj 1 , .  . . , 2n  as n 
distinct unordered pairs (il, jl), . . . , (in, in) .  The two-point function W:: (f, t, g, slK, p )  
is given by 

- n - 1 )  w:n..+*"-l ( f l ,  tl ,  * * , fZn-1, tzn-lIK,P) = 0 rial 

2 

r = l  
(4.9) iwt ( r )  - iws ( r )  - @FL (f, t ,  g, SIK, p )  = 4 c (e e ,  T,,A e eo T ~ ~ . K ~ ) - ~ I Z .  

Proof. We can write 

(TwY,K - T,,,)f = e(QK - Q)dWG&d,$f +eQK&GJwd,.& -6)f. 
By (3.8) we have 

supIQK(k)l<c k 

for some constant c independent of K. Since &(k) - ,p* (k )  as K + O  and 

K - 0  lim ~ + ( k  ' 1 ~ )  = ~ + ( k  '10) = ~ + ( k ' ) ,  (4.13) 

the first part follows from the dominated convergence theorem. The second part is 
clear. 

(4.14) 
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Then, we have 

D+(&') = m ( 1  - e ' F ( k ) ) .  (4.15) 

Since F is continuous on R 3  (see lemma 3.1) and F(&)+(2/3m)l(p^/wl$ as (&(+a, 
we get 

(4.16) 

Lemma 4.4. The operator T," is analytic with respect to e on the region 

nM ={e E le1 <M- ' )  (4.17) 

where the analyticity is taken in the operator-norm sense on M,(R3) for a = -1, &$, 
0. The Taylor expansion is given by 

Proof. We have from (4.15) and (4.16) 

(4.18) 

(4.19) 

(4.20) 

where the convergence is absolute and uniform. Let 
N 

Ulfl' = 1 e'"T;>. 
n=O 

It is easy to see that 

(T," - ULy,",')f = (e2F)NeQp^&GJwd,$f. 
1 Noting the boundedness of G on M,(R3),  a = -I, 0, we have 

1 sup I K T , ~  - U:? ) f I I , / I I f I I ,  constant x le \(le 1 ~ ) ' ~  + o ( N  + 00) a = -1, *I, 0 
f 

which imply the lemma. 

exists and is analytic with respect to e on the region nM. 
Proof. It follows from (4.9) and (4.11) that 

(4.21) 

= Pf2 ( f ,  t ,  g, s) (4.22) 

which, together with (4.3, (4.7) and (4.12), implies the existence of the limit K -P 0 
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of the Wightman distributions. This proves the first half of the theorem. We have 
by lemma 4.4 

33 

@E: (f, t ,  g, s) = C e2"C1:i if, I ,  g, s) O S e < M - '  (4.23) 
n = O  

where 

(4.24) 

Therefore, @E: (f, t, g, s )  has an analytic continuation with respect to e onto the region 
nM. Since WF,' ," i f l ,  t l ,  . . . , fn, t n l p )  can be written as a sum of products of 

@,&, (f,, tl,f,, t J )  and CWt( f , l p )  (see (4.5)-(4.8)), the second half of the theorem follows. @"' 

The Wightman reconstruction theorem permits us to construct a field theory from 
the sequence {W;) , , ,Kn( f l ,  t l ,  . . . ,fn, t , /p)},  which should be the theory of our model 
with the infrared cut-off removed. We shall construct it explicitly. 

Definitions 
(1) The Hilbert space of state vectors: 

Xe""(p) = g E M  p € R 3 .  

(2) The Heisenberg field: 
iwf 

(3) The Hamiltonian: 

H ( p )  = HFM p e R 3 .  

(4) The DES: 

* l ( P )  = no p € R 3 .  

Theorem 4.2. (1) The Heisenberg field A(f,  t l p )  satisfies the equation 

for all \v in SF", where the time derivative is taken in the strong topology. 

(2) A(f,  t i p )  = e'lH@]A(f, Olp) on D(H(P) '") .  

(3) (equal-time commutation relations) 

on 9:". 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

(4.31) 
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By the Riemann-Lebesgue lemma we also have 

(5.10) 

On the other hand, let 
x ( ~ )  = e-iwrw:si* eiwrf. 

It is easy to see that X(t) is strongly differentiable with respect to t in Mo(R3) and 
( s i  - i d  -iwf d ieQoe,, e ( L e i ) b , f )  . 

-X(t) = - 
dt 2 J, JW 0 

Therefore, we get 

By integration by parts we have 

so that the strong limits ~ - - l i m ~ + + ~ X ( ? ) = X +  in M 0 ( R 3 )  exist. It is easy to check 
that they are given by 

x- = s,, f x, = LFT)f,  

Since 

(5.11) 

s - lim ~ '~ ' ( f , , )q  = u ( ~ ' ( ~ ) Y  r = l , 2  q E s,"" 
n e 3 0  

as f n  +f in Mo(R3),  the desired result with respect to a'"(f, t l p )  follows from (5.3) 
and (5,9)-(5.11). In the same way we can prove the result for acr i * ( f ,  t ( p ) .  

Theorem 5.1 shows that, in our model, the LSZ asymptotic condition holds in the 
strong topology. 

We now proceed to construct the scattering operator or S matrix. The Hilbert 
spaces Xin,,,,(p) of scattering states for photons are defined by the closures of the 
linear span of the vectors 

q l ( ~ ) a : i j b * , t ( f l ! ~ )  . * a j i izt(fnIP)ql(p) r, = 1, 2 f l  E 9 ( R 3 )  n z l .  

Lemma 5.1. (Asymptotic completeness.) 

Xii,(p) = Z o u t ( p )  = Xren(p). 
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Theorem 5.2. The n-photon S-matrix elements have the form 
(n 1 Sr,  ... r , , ; s ,  ... s n ( f l ,  . . . , f n ;  gl, * * 3 gnlp) 

where Z, denotes the sum over all permutations .rr of (1 , .  . . , n) .  The one-photon 
S-matrix elements are given by 

(5.15) 

Proof. Equations (5.14)-(5.17) follow from theorem 5.1 and direct computation. The 
second half of the theorem can be proved by using (4.20) and (5.14). 

Remark. We can also show that all the off-diagonal S-matrix elements are zero. 
Hence the physical photon number is conserved in the scattering. 

By (5.16) and (5.17) we can compute the total cross section a ( k l p )  of the scattering 
of one photon with incoming momentum k by the electron with momentum p .  The 
result is 

cr(klp) = ~.rrr~(2.rr)6$(k)21mQ~(k)/e12 

ro = e2/4.rrm 
where 

is the classical electron radius. 

(5.19) 

Theorem 5.3. The total cross section of the scattering of one photon by an electron 
tends to that of the Thomson scattering in the low photon-energy limit if and only if 
the electron mass is renormalised. 

Proof. We see that $(k)-, ( 2 ~ ) ~ ~ ' ~  as lk1+0 and 

lim Q&) = ( 2 ~ ) - ~ / ~ ( e / m ) .  
I M + O  

(5.20) 
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Therefore we get from (5.19) 

lim c+(klp)  = 
lkl+O 

which is the cross section of the Thomson scattering. However, this result could not 
be obtained if the electron mass was not renormalised, because (5.20) comes from 
the mass renormalisation. Thus the theorem follows. 

6. Conclusion 

We have considered the model defined by the Hamiltonian (2.8) or (2.14) with 
(respectively without) infrared cut-off and analysed the spectral properties (corollaries 
3.2 and 3.3), establishing the existence (respectively absence) of the DES (theorems 
3.3 and 3.4 and corollary 3.1). After the reconstruction of the theory without infrared 
cut-off, but having the DES, by means of the Wightman distributions, we have developed 
the scattering theory of photons by an electron and shown that the mass renormalisation 
of the electron is necessary to obtain the cross section of the Thomson scattering in 
the low photon-energy limit (theorem 5.3). 

An interesting and important problem now is to extend our results to the case 
without the dipole approximation. The model in this case is of course not explicitly 
soluble. However, the proof of existence (respectively absence) of the DES of the 
Hamiltonian with (respectively without) infrared cut-off and the construction of the 
scattering theory would go in parallel with Frohlich (1973). In this abstract approach, 
however, we shall have to devise some appropriate calculation scheme to study the 
behaviour of the scattering cross section, e.g., its low photon-energy limit. 
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Appendix 

Lemma. Let S be a Hilbert-Schmidt operator on Lz(R") ,  n 2 1. Then, 

where 

R(x )  = 1x1 X E R " .  

Proof. We can write 

f E L2(R " )  

( S  eiRtf)(x) = 5 dy S(x, y )  ei'"'f(y) 

where S (  * ,  . ) E  L2(R2")  is the Hilbert-Schmidt kernel of S.  The square integrability 
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of S ( . ,  * )  and the Riemann-Lebesgue lemma imply that 

lim ( S  eiRy)(x) = 0 AEX. 
[+*cc 

Furthermore, we have by the Schwarz inequality 

AEX. 

The RHS does not depend on r and is integrable with respect to dx. Thus, by the 
dominated convergence theorem, we get the desired result. 
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